

Cambridge International AS & A Level

MATHEMATICS (9709) P2

TOPIC WISE QUESTIONS + ANSWERS | COMPLETE SYLLABUS

Chapter 1

Algebra

1. 9709_s20_qp_21 Q: 2

The 1	nolynor	nial n	(r)	ic	defined	hv
11110	DOLYHOL	шаг р	(ス)	18	delilled	υγ

where a and b are constants. It is given that $(x-2)$ and $(2x+1)$ are factors of $p(x)$.	
Find the values of a and b .	5]
	·
	·
	·••
40	
N. C.	
60	
4000	
	••
	••
	••
**	
	••
	••
	•••
	••
	••

 $p(x) = 6x^3 + ax^2 + 9x + b,$

9	9709	a20	an	91	Ω	4
Ζ.	9709	SZU	ab	21	w:	-4

(a)	Sketch, on the same diagram, the graphs of $y = 3x + 2a $ and $y = 3x - 4a $, where a is a positive
	constant.

Give the coordinates of the points where each graph meets the axes. [3]

		190°
(b)	Find the coordinates of the point of intersection of the two graphs.	[3]
	A 0.0	

(c)	Deduce the solution of the inequality $ 3x + 2a < 3x - 4a $.	[1]

3. 9709_s20_qp_22 Q: 5

(a)	Sketch, on the same diagram	, the graphs of $y = 2x - 3 $ and $y = 3x + 5$.	[2]

	Abildo e
(b)	Solve the inequality $3x + 5 < 2x - 3 $. [3]
	0
	**

	4.	9709	w20	αp	21	Q:	1
--	----	------	-----	----	----	----	---

$\ln(2x+1) - \ln(x-3) = 2,$	
dx in terms of e.	[4]
	••••
. 29	,
	• • • • • • • • • • • • • • • • • • • •
	••••
	· • • • •
	••••

 $5.9709 w20 qp_21 Q: 2$

The polynomial	p()	x) is	defined	by
----------------	-----	-------	---------	----

$$p(x) = x^3 + ax^2 + bx + 16,$$

where a and b are constants. It is given that (x + 2) is a factor of p(x) and that the remainder is 72 when p(x) is divided by (x - 2).

Find the values of a and b .	[5]
	%
30	
	••••••
C ²	
~0	
40	
100 0	
**	

6. 9709_	_w20_qp_21 Q: 4
(a)	Solve the equation $ 2x - 5 = x + 6 $. [3]
	.0
(b)	Hence find the value of y such that $ 2^{1-y} - 5 = 2^{-y} + 6 $. Give your answer correct to 3 significant figures. [2]
	**

7. 9709_w20_qp_22 Q: 3

(a)	Sketch, on a single diagram, the graphs of $y =$	$=\left \frac{1}{2}x-a\right $	and $y = \frac{3}{2}x - \frac{1}{2}a$, where a is a positive
	constant.			[2]

(b)	Find the coordinates of the point of intersection of the two graphs. [3]
	20
	1
(c)	Deduce the solution of the inequality $\left \frac{1}{2}x - a \right > \frac{3}{2}x - \frac{1}{2}a$. [1]

 $8.\ 9709_m19_qp_22\ Q:\ 2$

Given that x satisfies the equation $ 2x + 3 = 2x - 1 $, find the value of			
4x - 3 - 6x . [4]			
<i>CP</i>			

9. 9709_m19_qp_22 Q: 4

(i)	Find the quotient when $4x^3 + 8x^2 + 11x + 9$ is divided by $(2x + 1)$, and show that the remainder is 5.

ii)	Show that the equation $4x^3 + 8x^2 + 11x + 4 = 0$ has exactly one real root. [3]

,	Solve the inequality $ 3x - 5 < x + 3 $.
	201
i)	Hence find the greatest integer n satisfying the inequality $ 3^{0.1n+1} - 5 < 3^{0.1n} + 3 $.
	**

 $11.\ 9709_s19_qp_21\ Q{:}\ 5$

The polynomial p(x) is defined by

$$p(x) = 5x^3 + ax^2 + bx - 16,$$

where a and b are constants. It is given that (x - 2) is a factor of p(x) and that the remainder is 27 when p(x) is divided by (x + 1).

(i)	Find the values of a and b .	[5]
		.0,
		(0)
		*O

Hence factorise $p(x)$ completely.	
	20
	NO.
<u> </u>	
100	

12. 9709_s19_qp_22 Q: 1

The polynomial $p(x)$ is define	ned by
---------------------------------	--------

$p(x) = 4x^3 + (k+1)x^2 - mx + 3k,$			
where k and m are constants. Given that $(x + 1)$ is a factor of $p(x)$, express m in terms of k . [3]			
409			

 $13.\ 9709_s19_qp_22\ Q:\ 2$

(i)	Solve the equation $ 4 + 2x = 3 - 5x $.	[3]
		100

		•••••
(ii)	Hence solve the equation $ 4 + 2e^{3y} = 3 - 5e^{3y} $, giving the answer correct	to 3 significant figures.
		[2]
		•••••

14. 9709_w19_qp_21 Q: 1

(i)	Solve the inequality $ 2x-7 < 2x-9 $.	[3]
		•
)
ii)	Hence find the largest integer n satisfying the inequality $ 2 \ln n - 7 < 2 \ln n - 9 $.	[2]
		•••••••
		•

15. $9709_{y19_{qp}_{1}} = 21 \ Q: 4$

The 1	nolvno	mial r	o(x)	is	defined	hv
1110	DULYING	ина і	ハルィ	10	ucilicu	UY

$$p(x) = ax^3 + ax^2 - 15x - 18,$$

where a is a constant. It is given that (x-2) is a factor of p(x).

(i)	Find the value of a . [2]
(ii)	Using this value of a , factorise $p(x)$ completely. [3]
(iii)	Hence solve the equation $p(e^{\sqrt{y}}) = 0$, giving the answer correct to 2 significant figures. [2]

16. 9709_w19_qp_22 Q: 1

The polynomial	f(x)	is	defined	by
----------------	------	----	---------	----

$f(x) = x^4 - 3x^3 + 5x^2 - 6x + 11.$				
Find the quotient and remainder when $f(x)$ is divided by $(x^2 + 2)$.	[3]			
	••••••			
	•••••			
.0,				
.00	•••••			
	•••••			
100				
	•••••			
	•••••			
	•••••			

17.	9709_m18_qp_22 Q: 1
	Solve the inequality $ 5x + 2 > 4x + 3 $. [4]
	<u> </u>
	29

18. 9709_m18_qp_22 Q: 4

The polynomi	al $p(x)$) is defined	1 by
--------------	-----------	--------------	------

p(x) = 4	$4x^3 + 4$	$x^2 - 29$	9x - 15.
----------	------------	------------	----------

(i)	Use the factor theorem to show that $(x + 3)$ is a factor of $p(x)$.	[2]
(;;)	Factorise $p(x)$ completely.	[3]
(11)	ractorise p(x) completely.	[2]
	-28	

(iii)	Hence,	given	that

$2^{3u+2} + 4^{u+1} = 29 \times 2^u + 15,$
using logarithms, find the value of u corrections

find the value of 2^n and, using logarithms, find the value of u correct to 3 significant figures. [3]
~~

19. 9709_s18_qp_21 Q: 6

The cubic p	olynomial f(x	is defined by
-------------	---------------	---------------------------------

$$f(x) = x^3 + ax^2 + 14x + a + 1,$$

where a is a constant. It is given that (x + 2) is a factor of f(x).

Use the factor theorem to find the value of a and hence factorise $f(x)$ completely.	[:
	•••••
	••••••
	2
)
	•••••
	•••••
	•••••

		•••••
	·····	>
	NO.	
_		
	· · · · · · · · · · · · · · · · · · ·	
		•••••
••		
		
		•••••

20.	9709_s18_qp_22 Q: 1
	Solve the inequality $ 3x-2 < x+5 $. [4]
	20
	29
	- A
	40
	100

21. 9709 s18 qp 22 Q: 3

i)	Find the quotient when $x^4 - 2x^3 + 8x^2 - 12x + 13$
	is divided by $x^2 + 6$ and show that the remainder is 1. [3]
	•••

(ii)	Show that the equation
	$x^4 - 2x^3 + 8x^2 - 12x + 12 = 0$
	has no real roots. [3]
	0-

22.	9709_w18_qp_22 Q: 1
	Solve the inequality $ 3x - 5 < 2 x $. [4]
	٧
	29

 $23.\ 9709_m17_qp_22\ Q:\ 6$

The polynomial p(x) is defined by

$$p(x) = ax^3 + bx^2 - 17x - a,$$

where a and b are constants. It is given that (x + 2) is a factor of p(x) and that the remainder is 28 when p(x) is divided by (x - 2).

(i)	Find the values of a and b .	[5]
		.0,
		10
	*	0

Hence factorise $p(x)$ completely. [3]
10
State the number of roots of the equation $p(2^y) = 0$, justifying your answer [2]
State the number of roots of the equation $p(2^y) = 0$, justifying your answer. [2]
State the number of roots of the equation $p(2^y) = 0$, justifying your answer. [2]
State the number of roots of the equation $p(2^y) = 0$, justifying your answer. [2]
State the number of roots of the equation $p(2^y) = 0$, justifying your answer. [2]
State the number of roots of the equation $p(2^y) = 0$, justifying your answer. [2]
State the number of roots of the equation $p(2^y) = 0$, justifying your answer. [2]
State the number of roots of the equation $p(2^y) = 0$, justifying your answer. [2]
State the number of roots of the equation $p(2^y) = 0$, justifying your answer. [2]
State the number of roots of the equation $p(2^y) = 0$, justifying your answer. [2]

9709_s17_qp_21 Q: 2
Solve the inequality $ 4 - x \le 3 - 2x $. [4]
·# A Palpacal

25. $9709 \text{_s}17 \text{_q}p \text{_}22 \text{ Q}$: 1

Solve the equation |x + a| = |2x - 5a|, giving x in terms of the positive constant a. [3]

26. $9709_s17_qp_22$ Q: 6

(i) Use the factor theorem to show that $(x + 2)$ is a factor of the expres

$6x^3 + 13x^2 - 33x - 70$	
and hence factorise the expression completely.	[5]
	<u> </u>
)

(ii) Deduce the roots of the equation

$6 + 13y - 33y^2 - 70y^3 = 0.$	[2]
	
)
4.O.7	<u></u>
	•••••••••
	••••••••••

 $27.\ 9709_w17_qp_21\ Q\hbox{:}\ 5$

The polynomial p(x) is defined by

$$p(x) = ax^3 + bx^2 + 37x + 10$$

where a and b are constants. It is given that (x + 2) is a factor of p(x). It is also given that the remainder is 40 when p(x) is divided by (2x - 1).

(i)	Find the values of a and b .	[5]
		.0
		10

(ii)	When a and b have these values, factorise $p(x)$ completely. [3]
	**

 $28.\ 9709_w17_qp_22\ Q\hbox{:}\ 2$

It is given that x satisfies the equation $ x + 1 = 4$. Find the possible values of	
x+4 - x-4 .	4]
	•••
	•••
<u></u>	
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••

29	9709	w 17	an	22	O	4
Z9.	9109	WII	uν	22	ω :	4

The po	lvnomials	p(x)	and $a(x)$	are defined by

$$p(x) = x^3 + x^2 + ax - 15$$
 and $q(x) = 2x^3 + x^2 + bx + 21$,

where a and b are constants. It is given that (x + 3) is a factor of p(x) and also of q(x).

(i)	Find the values of a and b .	[3]
		0
	70	
(ii)	Show that the equation $q(x) - p(x) = 0$ has only one real root.	[4]
	.00	
	.00	

 $30.\ 9709_m16_qp_22\ Q\!: 1$

Find the quotient and the remainder when $2x^3 + 3x^2 + 10$ is divided by (x + 2).

[3]

 $31.\ 9709_m16_qp_22\ Q:\ 2$

Solve the inequality |x-5| < |2x+3|.

[4]

 $32.9709_s16_qp_21~Q:4$

The polynomial p(x) is defined by

$$p(x) = 8x^3 + 30x^2 + 13x - 25.$$

- (i) Find the quotient when p(x) is divided by (x + 2), and show that the remainder is 5. [3]
- (ii) Hence factorise p(x) 5 completely. [3]
- (iii) Write down the roots of the equation p(|x|) 5 = 0. [1]

33. 9709_s16_qp_22 Q: 2

- (i) Find the quotient and remainder when $2x^3 7x^2 9x + 3$ is divided by $x^2 2x + 5$. [3]
- (ii) Hence find the values of the constants p and q such that $x^2 2x + 5$ is a factor of $2x^3 7x^2 + px + q$.

 $34.\ 9709_s16_qp_22\ Q:\ 3$

(i) Solve the equation |3u + 1| = |2u - 5|.

[3]

(ii) Hence solve the equation $|3 \cot x + 1| = |2 \cot x - 5|$ for $0 < x < \frac{1}{2}\pi$, giving your answer correct to 3 significant figures. [2]

35. 9709_w16_qp_22 Q: 1

Solve the equation |0.4x - 0.8| = 2.

[3]

 $36.\ 9709_w16_qp_22\ Q:\ 4$

The polynomial p(x) is defined by

$$p(x) = 4x^3 + ax^2 + ax + 4,$$

where a is a constant.

- (i) Use the factor theorem to show that (x + 1) is a factor of p(x) for all values of a. [2]
- (ii) Given that the remainder is -42 when p(x) is divided by (x-2), find the value of a. [2]
- (iii) When a has the value found in part (ii), factorise $p(x^2)$ completely. [4]

 $37.9709 w16 qp_23 Q: 4$

The polynomial p(x) is defined by

$$p(x) = ax^3 + 3x^2 + 4ax - 5,$$

where a is a constant. It is given that (2x - 1) is a factor of p(x).

- (i) Use the factor theorem to find the value of a. [2]
- (ii) Factorise p(x) and hence show that the equation p(x) = 0 has only one real root. [4]
- (iii) Use logarithms to solve the equation $p(6^y) = 0$ correct to 3 significant figures. [2]

 $38.\ 9709_s15_qp_21\ Q:\ 4$

The polynomials f(x) and g(x) are defined by

$$f(x) = x^3 + ax^2 + b$$
 and $g(x) = x^3 + bx^2 - a$,

where a and b are constants. It is given that (x + 2) is a factor of f(x). It is also given that, when g(x) is divided by (x + 1), the remainder is -18.

- (i) Find the values of a and b. [5]
- (ii) When a and b have these values, find the greatest possible value of g(x) f(x) as x varies. [2]

 $39.\ 9709_s15_qp_22\ Q\hbox{:}\ 2$

(i) Given that (x + 2) is a factor of

$$4x^3 + ax^2 - (a+1)x - 18$$
,

find the value of the constant a.

[3]

(ii) When a has this value, factorise $4x^3 + ax^2 - (a+1)x - 18$ completely.

[3]

[4]

40. 9709_w15_qp_21 Q: 6

(i) Find the quotient and remainder when

$$x^4 + x^3 + 3x^2 + 12x + 6$$

is divided by $(x^2 - x + 4)$.

(ii) It is given that, when

$$x^4 + x^3 + 3x^2 + px + q$$

is divided by $(x^2 - x + 4)$, the remainder is zero. Find the values of the constants p and q. [2]

(iii) When p and q have these values, show that there is exactly one real value of x satisfying the equation

$$x^4 + x^3 + 3x^2 + px + q = 0$$

and state what that value is.

 $41.9709 w15_{p}23 Q: 4$

- (i) Find the quotient when $3x^3 + 5x^2 2x 1$ is divided by (x 2), and show that the remainder is 39.
- (ii) Hence show that the equation $3x^3 + 5x^2 2x 40 = 0$ has exactly one real root. [3]

